Title: | Multi-Collinearity Visualization |
---|---|
Description: | Visualize the relationship between linear regression variables and causes of multi-collinearity. Implements the method in Lin et. al. (2020) <doi:10.1080/10618600.2020.1779729>. |
Authors: | Kevin Wang [aut, cre], Chen Lin [aut], Samuel Mueller [aut] |
Maintainer: | Kevin Wang <[email protected]> |
License: | GPL-3 |
Version: | 1.0.8 |
Built: | 2025-02-06 04:42:29 UTC |
Source: | https://github.com/kevinwang09/mcvis |
Multi-collinearity Visualization plots
Multi-collinearity Visualization plots
Multi-collinearity Visualization plots
alt_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC)) ggplot_mcvis( mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC), label_dodge = FALSE ) igraph_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC)) ## S3 method for class 'mcvis' plot( x, type = c("ggplot", "igraph", "alt"), eig_max = 1L, var_max = ncol(x$MC), label_dodge = FALSE, ... )
alt_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC)) ggplot_mcvis( mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC), label_dodge = FALSE ) igraph_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC)) ## S3 method for class 'mcvis' plot( x, type = c("ggplot", "igraph", "alt"), eig_max = 1L, var_max = ncol(x$MC), label_dodge = FALSE, ... )
mcvis_result |
Output of the mcvis function |
eig_max |
The maximum number of eigenvalues to be displayed on the plot. |
var_max |
The maximum number of variables to be displayed on the plot. |
label_dodge |
If variable names are too long, it might be helpful to dodge the labelling. Default to FALSE. |
x |
Output of the mcvis function |
type |
Plotting mcvis result using "igraph" or "ggplot". Default to "ggplot". |
... |
additional arguments (currently unused) |
A mcvis visualization plot
Chen Lin, Kevin Wang, Samuel Mueller
set.seed(1) p = 10 n = 100 X = matrix(rnorm(n*p), ncol = p) X[,1] = X[,2] + rnorm(n, 0, 0.1) mcvis_result = mcvis(X) plot(mcvis_result) plot(mcvis_result, type = "igraph") plot(mcvis_result, type = "alt")
set.seed(1) p = 10 n = 100 X = matrix(rnorm(n*p), ncol = p) X[,1] = X[,2] + rnorm(n, 0, 0.1) mcvis_result = mcvis(X) plot(mcvis_result) plot(mcvis_result, type = "igraph") plot(mcvis_result, type = "alt")
Multi-collinearity Visualization
mcvis( X, sampling_method = "bootstrap", standardise_method = "studentise", times = 1000L, k = 10L )
mcvis( X, sampling_method = "bootstrap", standardise_method = "studentise", times = 1000L, k = 10L )
X |
A matrix of regressors (without intercept terms). |
sampling_method |
The resampling method for the data. Currently supports 'bootstrap' or 'cv' (cross-validation). |
standardise_method |
The standardisation method for the data. Currently supports 'euclidean' (default, centered by mean and divide by Euclidiean length) and 'studentise' (centred by mean and divide by standard deviation) |
times |
Number of resampling runs we perform. Default is set to 1000. |
k |
Number of partitions in averaging the MC-index. Default is set to 10. |
A list of outputs:
t_square:The t^2 statistics for the regression between the VIFs and the tau's.
MC:The MC-indices
col_names:Column names (export for plotting purposes)
Chen Lin, Kevin Wang, Samuel Mueller
set.seed(1) p = 10 n = 100 X = matrix(rnorm(n*p), ncol = p) X[,1] = X[,2] + rnorm(n, 0, 0.1) mcvis_result = mcvis(X = X) mcvis_result
set.seed(1) p = 10 n = 100 X = matrix(rnorm(n*p), ncol = p) X[,1] = X[,2] + rnorm(n, 0, 0.1) mcvis_result = mcvis(X = X) mcvis_result
Shiny app for mcvis exploration
shiny_mcvis(mcvis_result, X)
shiny_mcvis(mcvis_result, X)
mcvis_result |
Output of the mcvis function |
X |
The original X matrix |
A shiny app allowing for interactive exploration of mcvis results
Chen Lin, Kevin Wang, Samuel Mueller
if(interactive()){ set.seed(1) p = 10 n = 100 X = matrix(rnorm(n*p), ncol = p) mcvis_result = mcvis(X) shiny_mcvis(mcvis_result = mcvis_result, X = X) }
if(interactive()){ set.seed(1) p = 10 n = 100 X = matrix(rnorm(n*p), ncol = p) mcvis_result = mcvis(X) shiny_mcvis(mcvis_result = mcvis_result, X = X) }